Обмен белков. Обмен жиров. Обмен углеводов. Печень, ее роль в обмене веществ. Печень перекрещивает метаболизм углеводов, липидов и белков

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Пермский национальный исследовательский политехнический университет

Кафедра охраны окружающей среды


Курсовая работа по дисциплине «Физиология»

Обмен белков. Обмен жиров. Обмен углеводов. Печень, ее роль в обмене веществ.


Выполнил: студент группы ООС-11

Мякишева Александра



Введение

Глава 1. Обмен белков

1.1 Белки и их функции

1.2 Промежуточный обмен белков

1.3 Регуляция обмена белков

1.4 Баланс азотистого обмена

Глава 2. Обмен жиров

2.1 Жиры и их функции

2.2 Переваривание и всасывание жиров в организме

2.3 Регуляция обменов жиров

Глава 3. Обмен углеводов

3.1 Углеводы и их функции

3.2 Расщепление углеводов в организме

3.3 Регуляция обмена углеводов

Глава 4. Печень, ее роль в обмене веществ

4.1 Структура печени

4.2 Функции печени

4.3 Роль печени в обмене веществ

Вывод

Список литературы


Введение


Нормальная деятельность организма возможна при непрерывном поступлении пищи. Входящие в состав пищи жиры, белки, углеводы, минеральные соли, вода и витамины необходимы для жизненных процессов организма.

Питательными веществами называются белки, жиры и углеводы. Эти вещества являются как источником энергии, покрывающем расходы организма, так и строительным материалом, который используется в процессе роста организма и воспроизведения новых клеток, замещающих отмирающие. Но питательные вещества в том виде, в каком они употребляются в пищу, не могут всосаться и быть использованными организмом. Только вода, минеральные соли и витамины всасываются и усваиваются в том виде, в каком они поступают. В пищеварительном тракте белки, жиры и углеводы подвергаются физическим воздействиям (измельчаются и перетираются) и химическим изменениям, которые происходят под влиянием особых веществ - ферментов, содержащихся в соках пищеварительных желёз. Под влиянием пищеварительных соков питательные вещества расщепляются на более простые, которые всасываются и усваиваются организмом. В свою очередь печень - регулятор содержания в крови веществ, поступающих в организм в составе пищевых продуктов. Она поддерживает стабильность внутренней среды организма. В печени протекают важнейшие процессы углеводного, белкового и жирового обмена.

Цель работы: Провести оценку обмена жиров, белков и углеводов. Установить какую роль занимает печень в обмене веществ.

.Узнать, как происходит обмен белков, жиров и углеводов

.Познакомится со специфическими свойствами белков, жиров и углеводов

.Проанализировать какую роль занимает печень в обмене веществ

жир белок углевод печень


Глава 1. Обмен белков


Жизнь - есть форма существования белковых тел (Ф. Энгельс).

Обмен белков в организме человека играет первостепенную роль в их разрушении и восстановлении. У здорового человека в нормальных условиях за сутки обновляется 1-2% общего количества белков тела, что связано в основном с расщеплением (деградацией) мышечных белков до уровня свободных аминокислот. Около 80% высвобождающихся аминокислот снова используется в процессах биосинтеза белка, остаток принимает участие в различных реакциях метаболизма <#"justify">1.1 Белки и их функции


Белок - высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью.

Белки являются основным веществом, из которого построена протоплазма клеток и межклеточные вещества. Без белков нет и не может быть жизни. Все ферменты, без которых не могут протекать обменные процессы, являются белковыми телами.

Строение белков отличается большой сложностью. При гидролизе кислотами, щелочами и протеолитическими ферментами белок расщепляется до аминокислот, общее число которых более двадцати пяти. Помимо аминокислот, в состав различных белков входят и многие другие компоненты (фосфорная кислота, углеводные группы, липоидные группы, специальные группировки).

Белки отличаются высокой специфичностью. В каждом организме и в каждой ткани имеются белки, отличные от белков, входящих в состав других организмов и других тканей. Высокая специфичность белков может быть выявлена при помощи биологической пробы.

Основное значение белков заключается в том, что за их счет строятся клетки и межклеточное вещество и синтезируются вещества, принимающие участие в регуляции физиологических функций. В известной мере белки, однако, наряду с углеводами и жирами, используются и для покрытия энергетических затрат.

Функции белков:

·Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза. Белки входят в состав всех клеток организма и межтканевых структур.

·Ферментативная активность белков регулирует скорость протекания биохимических реакций. Белки-ферменты определяют все стороны обмена веществ и образования энергии не только из самих протеинов, но из углеводов и жиров.

·Защитная функция белков состоит в образовании иммунных белков - антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).

·Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином, а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.

·Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию. Однако при этом пластическая роль белков в метаболизме превосходит ихэнергетическую, а также пластическую роль других питательных веществ. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний.

В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов, из которых в дальнейшем клетками различных тканей и органов, в частности печени, синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов .


1.2 Промежуточный обмен белков


Распад (расщепление) белков в организме, в основном, происходит за счёт ферментативного гидролиза. Основным материалом для обновления клеточных белков служат аминокислоты, получаемые при переработке пищи, в которой содержатся белки. Всасывание аминокислот в кровь происходит главным образом в тонком кишечнике, где существуют определённые системы транспорта аминокислот. С помощью кровотока аминокислоты доставляются во все органы и ткани организма человека. Максимальная концентрация аминокислот достигается через 30-50минут после приема белковой пищи. Изменяя количественное соотношение между поступающими в организм аминокислотами или исключая из рациона ту или иную аминокислоту, можно по состоянию азотистого баланса, росту, массе тела и общему состоянию животных судить о значении для организма отдельных аминокислот. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме - заменимые аминокислоты, а 8 не синтезируются - незаменимые аминокислоты.

Без незаменимых аминокислот синтез белка резко нарушается и наступает отрицательный баланс азота, останавливается рост, уменьшается масса тела. Для людей незаменимыми аминокислотами являются лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан.

Белки в организме не депонируются, т.е. не откладываются в запас. Большая часть поступающих с пищей белков расходуется на энергетические цели. На пластические цели - т.е. на образование новых тканей (органов, мышц) расходуется лишь его небольшая часть. Поэтому, чтобы добавить массу тела за счет белка необходимо его поступление в организм в повышенных количествах.

Скорость обновления белков неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, плазмы крови. Медленно обновляются белки, входящие в состав клеток мозга, сердца, половых желез. Еще медленнее обновляются белки кожи, мышц, особенно опорных тканей - сухожилий, хрящей и костей.


1.3 Регуляция обмена белков


Нейроэндокринная регуляция обмена белков осуществляется рядом гормонов. Соматотропный гормон гипофиза во время роста организма стимулирует увеличение массы всех органов и тканей. У взрослого человека он обеспечивает процесс синтеза белка за счет повышения проницаемости клеточных мембран для аминокислот, усиления синтеза РНК в ядре клетки и подавления синтеза катепсинов - внутриклеточных протеолитических ферментов. Существенное влияние на белковый обмен оказывают гормоны щитовидной железы - тироксин и трийодтиронин. Они могут в определенных концентрациях стимулировать синтез белка и благодаря этому активизировать рост, развитие и дифференциацию тканей и органов. При базедовой болезни, характеризующейся усиленным выделением гормонов щитовидной железы (гипертиреоз), белковый обмен повышен. Напротив, при гипофункции щитовидной, железы (гипотиреоз) интенсивность белкового обмена резко снижается. Так как деятельность щитовидной железы находится под контролем нервной системы, то последняя и является истинным регулятором белкового обмена. Гормоны коры надпочечников - глюкокортикоиды (гидрокортизон, кортикостерон) усиливают распад белков в тканях, особенно в мышечной и лимфоидной. В печени же глюкокортикоиды, наоборот, стимулируют синтез белка .

На ход обмена белков оказывает большое влияние характер пищи. При мясной пище повышено количество образующейся мочевой кислоты, креатинина и аммиака. При растительной пище эти вещества образуются в значительно меньших количествах, так как в растительной пище мало пуринових тел и креатина.


1.4 Баланс азотистого обмена


К числу важных конечных продуктов азотистого обмена относятся также креатинин и гиппуровая кислота. Креатинин представляет собой ангидрид креатина. Креатин находится в мышцах и в мозговой ткани в свободном состоянии и в соединении с фосфорной кислотой (фосфокреатин). Гиппуровая кислота синтезируется из бензойной кислоты и гликокола (у человека преимущественно в печени и в меньших размерах в почках).

Продуктами распада белков, подчас имеющими большое физиологическое значение, являются амины (например, гистамин).

Изучение белкового обмена облегчается тем, что в состав белка входит азот. Содержание азота в различных белках колеблется от 14 до 19%, в среднем же составляет 16% т. е. 1 г азота содержится в 6,25 г белка. Следовательно, умножив найденное количество азота на 6,25, можно определить количество усвоенного белка. Между количеством азота, введенного с белками пищи, и количеством азота, выводимым из организма, существует определенная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище.

Во время роста организма или прироста в весе за счет усвоения увеличенного количества белков (например, после голодания, после инфекционных болезней) количество вводимого с пищей азота больше, чем количество выводимого. Азот задерживается в теле в форме белкового азота. Это обозначается как положительный азотистый баланс. При голодании, при заболеваниях, сопровождающихся большим распадом белков, наблюдается превышение выделяемого азота над вводимым, что обозначается как отрицательный азотистый баланс. В этом случаи не происходит полного восстановления белка. При недостатке белка в пище расходуется белки печени и мышц.

В организме белки в запас не откладываются, а лишь временно задерживаются в печени. Нормальная жизнедеятельность организма возможна при азотистом равновесии или положительном азотистом балансе.

При поступлении в тело белков в количестве меньшем, чем это соответствует белковому минимуму, организм испытывает белковое голодание: потери белков организмом восполняются в недостаточной степени. В течение более или менее продолжительного срока в зависимости от степени голодания отрицательный белковый баланс не грозит опасными последствиями. Однако, если голодание не прекратится, наступает смерть.

При продолжительном общем голодании количество азота, выводимого из организма, впервые дни резко снижается, затем устанавливается на постоянном низком уровне. Это обусловлено исчерпанием последних остатков других энергетических ресурсов, в частности, жиров.

Глава 2. Обмен жиров


Общее количество жира в организме человека колеблется в широких пределах и составляет в среднем 10-12% массы тела, а в случаях ожирения может достигать 50% массы тела. Количество запасного жира зависит от характера питания, количества потребляемой пищи, пола, возраста и т. п.

Использование жира в качестве источника энергии начинается с его выхода из жировых депо в кровяное русло. Этот процесс называется мобилизация жира. Мобилизация жира ускоряется под действием симпатической нервной системы и гормона адреналина.


1 Жиры и их функции


Жиры - природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов.

В живых организмах выполняют прежде всего структурную и энергетическую функции: они являются основным компонентом клеточной мембраны, а в жировых клетках сохраняется энергетический запас организма .

Жиры делятся на две группы - собственно жиры или липиды и жироподобные вещества или липоиды. В состав жиров входят углерод, водород и кислород. Жир имеет сложное строение; его составными частями является глицерин (С3Н8О3) и жирные кислоты, при соединении сложноэфирной связью и образуются молекулы жира. Это так называемые истинные жиры или триглицериды.

Жирные кислоты, входящие в состав жиров делятся на предельные и непредельные. Первые не имеют двойных связей и называются ещё насыщенными, а вторые имеют двойные связи и называются ненасыщенными. Есть ещё полиненасыщенные жирные кислоты, имеющие две и более двойные связи. Такие жирные кислоты в организме человека не синтезируются и должны обязательно поступать с пищей, так как являются для синтеза некоторых важных липоидов. Чем больше двойных связей, тем ниже температура плавления жира. Ненасыщенные жирные кислоты делают жиры более жидкими. Их много содержится в растительном масле.

Функции жиров:

·Нейтральные жиры (триглицериды):

oявляются важнейшим источником энергии. При окислении 1 г вещества выделяется максимальное по сравнению с окислением белков и углеводов количество энергии. За счёт окисления нейтральных жиров образуется 50% всей энергии в организме;

oсоставляют основную массу животной пищи и липидов организма (10-20% тела);

oявляются компонентом структурных элементов клетки - ядра, цитоплазмы, мембраны;

oдепонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы - от механических повреждений. Физиологическое допонирование нейтральных жиров выполняют липоциты, накопление которых происходит в подкожной жировой клетчатке, сальнике, жировых капсулах различных органов. Увеличение массы тела на 20-25% против нормы считается предельно допустимой физиологической границей.

·Фосфо- и гликолипиды:

oвходят в состав всех клеток организма (клеточные липиды), особенно нервных;

oявляются повсеместным компонентом биологических мембран организма;

oсинтезируются в печени и кишечной стенке, при этом печень определяет уровень фосфолипидов во всем организме, поскольку выделение фосфолипидов в кровь происходит только в печени;

·Бурый жир:

oпредставляет собой особую жировую ткань, расположенную в области шеи и верхней части спины у новорожденных и грудных детей и составляет у них около 1-2% от всей массы тела. В небольшом количестве (0,1-0,2% от массы тела) бурый жир имеется и у взрослого человека;

oспособен давать в 20 и более раз больше тепла (на единице массы его ткани), чем обычная жировая ткань;

oнесмотря на минимальное содержание в организме способен генерировать 1/3 всего образующегося в организме тепла;

oиграет важную роль в адаптации организма к низким температурам;

·Жирные кислоты:

oявляются основными продуктами гидролиза липидов в кишечнике. Большую роль в процессе всасывание жирных кислот играют желчь и характер питания;

oчрезвычайно важны для нормальной жизнедеятельности организма, к незаменимым жирным кислотам, которые не синтезируются организмом, относятся олеиновая, линолевая, линоленовая и арахидовая кислоты (суточная потребность 10-12 г).

§Линолевая и лоноленовая кислоты содержаться в растительных жирах, арахидовая - только в животных;

§Дефицит незаменимых жирных кислот в пище приводит к замедлению роста и развития организма, снижению репродуктивной функции и различным поражениям кожи. Способность тканей к утилизации жирных кислот ограничена их нерастворимостью в воде, большими размерами молекул а также структурными особенностями клеточных мембран самих тканей. Вследствие этого значительная часть жирных кислот связывается липоцитами жировой ткани и депонируется.

·Сложные жиры:

oфосфатиды и стерины - способствуют поддержанию постоянного состава цитоплазмы нервных клеток, синтезу половых гормонов и гормонов коркового вещества надпочечников, образованию некоторых витаминов (например, витамин D).


2.2 Переваривание и всасывание жиров в организме


Переваривание жира в организме человека происходит в тонком кишечнике. Жиры предварительно с помощью желчных кислот превращается в эмульсию. В процессе эмульгирования крупные капли жира превращаются в мелкие, что значительно увеличивает их суммарную поверхность. Ферменты сока поджелудочной железы - липазы, являясь белками, не могут проникать внутрь капель жира и расщепляют только молекулы жира, находящиеся на поверхности. Под действием липазы жир путем гидролиза расщепляется до глицерина и жирных кислот.

Поскольку в пище присутствуют разнообразные жиры, то в результате их переваривания образуется большое количество разновидностей жирных кислот.

Продукты расщепления жира всасываются слизистой тонкого кишечника. Глицерин растворим в воде, поэтому его всасывание происходит легко. Жирные кислоты, нерастворимые в воде, всасываются виде комплексов с желчными кислотами. В клетках тонкой кишки холеиновые кислоты распадаются на жирные и желчные кислоты. Желчные кислоты из стенки тонкого кишечника поступают в печень и затем снова выделяются в полость тонкого кишечника.

Освободившиеся жирные кислоты в клетках стенки тонкого кишечника вновь соединяются с глицерином, в результате чего вновь образуется молекула жира. Но в этот процесс вступают только жирные кислоты, входящие в состав жира человека. Таким образом, синтезируется человеческий жир. Такая перестройка пищевых жирных кислот в собственные жиры называется ресинтезом жира.

Ресинтезированные жиры по лимфатическим сосудам минуя печень поступают в большой круг кровообращения и откладываются в запас в жировых депо. Главные жировые депо организма располагаются в подкожной жировой клетчатке, большом и малом сальниках, околопочечной капсуле. Находящиеся здесь жиры могут переходить в кровь и, поступая в ткани, подвергаются там окислению, т.е. используются как энергетический материал.

Жир используется организмом как богатый источник энергии. При распаде 1 г жира в организме освобождается энергии в два с лишним раза больше, чем при распаде такого же количества белков или углеводов. Жиры входят и в состав клеток (цитоплазма, ядро, клеточные мембраны), где их количество устойчиво и постоянно. Скопления жира могут выполнять и другие функции. Например, подкожный жир препятствует усиленной отдаче тепла, околопочечный жир предохраняет почку от ушибов и т. д.

Недостаток жиров в пище нарушает деятельность центральной нервной системы и органов размножения, снижает выносливость к различным заболеваниям.


3 Регуляция обменов жиров


Регуляция жирового обмена в организме происходит под руководством центральной нервной системы. Очень сильное влияние на жировой обмен оказывают наши эмоции. Под действием различных сильных эмоций в кровь поступают вещества, которые активизируют или замедляют жировой обмен веществ в организме. По этим причинам надо принимать пищу в спокойном состоянии сознания.

Нарушение жирового обмена может произойти при регулярном недостатке в пище витаминов А и В.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэстерифицнрованных жирных кислот, служащих источником энергии.

Ряд гормонов оказывает выраженное влияние на жировой обмен. Сильным жиромобилизирующим действием обладают гормоны мозгового слоя надпочечников - адреналин и норадреналин, поэтому длительная адреналинемия сопровождается уменьшением жирового депо. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин - гормон щитовидной железы, поэтому гиперфункция щитовидной железы сопровождается похуданием.

Наоборот, тормозят мобилизацию жира глюкокортикоиды - гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови.

Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, наоборот, способствуют отложению жира.

Нервные влияния на жировой обмен контролируются гипоталамусом. При разрушении вентромедиальных ядер гипоталамуса развиваются длительное повышение аппетита и усиленное отложение жира. Раздражение вентромедиальных ядер, напротив, ведет к потере аппетита и исхуданию.

В табл. 11.2 приведены сводные данные о влиянии ряда факторов на мобилизацию жирных кислот <#"276" src="doc_zip1.jpg" />


Глава 3. Обмен углеводов


В течение жизни человек съедает около 10 т углеводов. Углеводы поступают в организм главным образом в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками. Особенно богата углеводами растительная пища: хлеб, крупы, овощи, фрукты. Продукты животного происхождения (за исключением молока) содержат мало углеводов.

Углеводы - главный источник энергии, особенно при усиленной мышечной работе. Больше половины энергии организм взрослых людей получает за счет углеводов. Конечные продукты обмена углеводов - углекислый газ и вода.

Обмен углеводов занимает центральное место в обмене веществ и энергии. Сложные углеводы пищи подвергаются расщеплению в процессе пищеварения до моносахаридов, в основном глюкозы. Моносахариды всасываются из кишечника в кровь и доставляются в печень и другие ткани, где включаются в промежуточный обмен. Часть поступившей глюкозы в печени и скелетных мышцах откладывается в виде гликогена либо используется для других пластических процессов. При избыточном поступлении углеводов с пищей они могут превращаться в жиры и белки. Другая часть глюкозы подвергается окислению с образованием АТФ и выделением тепловой энергии. В тканях возможны два основных механизма окисления углеводов - без участия кислорода (анаэробно) и с его участием (аэробно).


3.1 Углеводы и их функции


Углеводы - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии. Функции углеводов в организме:

·Углеводы являются непосредственным источником энергии для организма.

·Участвуют в пластических процессах метаболизма.

·Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды. Моносахариды - углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза). Дисахариды - углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза). Полисахариды - углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).


3.2 Расщепление углеводов в организме


Расщепление сложных углеводов пищи начинается в ротовой полости под действием ферментов амилазы и мальтазы слюны. Оптимальная активность этих ферментов проявляется в щелочной среде. Амилаза расщепляет крахмал и гликоген, а мальтаза -- мальтозу. При этом образуются более низкомолекулярные углеводы -- декстрины, частично -- мальтоза и глюкоза.

В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена. Процесс всасывания моносахаридов в кишечнике регулируется нервной и гормональной системами. Под действием нервной системы может измениться проницаемость кишечного эпителия, степень кровоснабжения слизистой оболочки кишечной стенки и скорость движения ворсинок, в результате чего меняется скорость поступления моносахаридов в кровь воротной вены. В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Гликоген печени представляет собой резервный, т. е. отложенный в запас, углевод. Количество его может достигать у взрослого человека 150-200 г. Образование гликогена при относительно медленном поступлении глюкозы в кровь происходит достаточно быстро, поэтому после введения небольшого количества углеводов повышения содержания глюкозы в крови (гипергликемия) не наблюдается. Если же в пищеварительный тракт поступает большое количество легко расщепляющихся и быстро всасывающихся углеводов, содержание глюкозы в крови быстро увеличивается. Развивающуюся при этом гипергликемию называют алиментарной, иначе говоря - пищевой. Ее результатом является глюкозурия, т. е. выделение глюкозы с мочой <#"justify">3.3 Регуляция обмена углеводов


Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови в пределах 4,4-6,7 ммоль/л. Изменение содержания глюкозы в крови воспринимается глюкорецепторами, сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Роль коры головного мозга в регуляции уровня глюкозы крови иллюстрирует развитие гипергликемии у студентов во время экзамена, у спортсменов перед ответственными соревнованиями, а также при гипнотическом внушении. Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы.

Выраженным влиянием на углеводный обмен обладает инсулин - гормон, вырабатываемый в-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Инсулин является единственным гормоном, понижающим уровень глюкозы в крови, поэтому при уменьшении секреции этого гормона развиваются стойкая гипергликемия и последующая глюкозурия (сахарный диабет, или сахарное мочеизнурение).

Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый альфа-клетками островковой ткани поджелудочной железы; адреналин - гормон мозгового слоя надпочечников; глюкокортикоиды - гормоны коркового слоя надпочечника; соматотропный гормон гипофиза; тироксин и трийодтиронин - гормоны щитовидной железы. В связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина эти гормоны часто объединяют понятием «контринсулярные гормоны».


Глава 4. Печень, ее роль в обмене веществ


1 Структура печени


Печень (hepar) - непарный орган брюшной полости, самая крупная железа в организме человека. Печень человека весит полтора-два килограмма. Это самая крупная железа тела. В брюшной полости она занимает правое и часть левого подреберий. Печень плотна на ощупь, но очень эластична: соседние органы оставляют на ней хорошо заметные следы. Даже внешние причины, например механическое давление, могут вызвать изменение формы печени. В печени происходит обезвреживание токсических веществ, поступающих в нее с кровью из желудочно-кишечного тракта; в ней синтезируются важнейшие белковые вещества крови, образуются гликоген, желчь; печень участвует в лимфообразовании, играет существенную роль в обмене веществ. Вся печень состоит из множества призматических долек размером от одного до двух с половиной миллиметров. Каждая отдельная долька содержит все структурные элементы целого органа и представляет собой как бы печень в миниатюре. Желчь образуется печенью непрерывно, но в кишечник она поступает только по мере надобности. В определенные периоды времени, желчный проток закрывается.

Очень своеобразна кровеносная система печени. Кровь притекает к ней не только по печеночной артерия, идущей от аорты, но и по воротной вене, которая собирает венозную кровь из органов брюшной полости. Артерии и вены густо оплетают печеночные клетки. Тесный контакт кровеносных и желчных капилляров, а также то обстоятельство, что в печени кровь течет медленнее, чем в других органах, способствуют более полному обмену веществ между кровью и клетками печени. Печеночные вены постепенно соединяются и впадают в крупный коллектор - нижнюю полую вену, в которую вливается вся кровь, прошедшая через печень.

Печень является одним из немногих органов, способных восстанавливать первоначальный размер даже при сохранении всего лишь 25 % нормальной ткани. Фактически регенерация происходит, но очень медленно, а быстрый возврат печени к своим первоначальным размерам происходит скорее из-за увеличения объёма оставшихся клеток.


4.2 Функции печени


Печень является одновременно органом пищеварения, кровообращения и обмена веществ всех видов, включая гормональный. Она выполняет более 70 функций. Рассмотрим основные из них. К важнейшим тесно связанным между собой функциям печени относятся общеметаболическая (участие в межуточном обмене), экскреторная и барьерная. Экскреторная функция печени обеспечивает выделение из организма с желчью более 40 соединений, как синтезированных самой печени, так и захваченных ею из крови. В отличие от почек она экскретирует также вещества с высокой молекулярной массой и не растворимые в воде. К числу веществ, экскретируемых печени в составе желчи, относятся желчные кислоты, холестерин, фосфолипиды, билирубин, многие белки, медь и др. Образование желчи начинается в гепатоците, где одни компоненты ее вырабатываются (например, желчные кислоты), а другие - захватываются из крови и концентрируются. Здесь же образуются парные соединения (конъюгация с глюкуроновой кислотой и другими соединениями), что способствует повышению водорастворимости исходных субстратов. Из гепатоцитов желчь поступает в систему желчных протоков, где происходит дальнейшее ее формирование за счет секреции или реабсорбции воды, электролитов и некоторых низкомолекулярных соединений.

Барьерная функция печени состоит в предохранении организма от повреждающего действия чужеродных агентов и продуктов метаболизма, сохранении гомеостаза. Барьерная функция осуществляется за счет защитного и обезвреживающего действия печени. Защитное действие обеспечивается неспецифическими и специфическими (иммунными) механизмами. Первые связаны прежде всего со звездчатыми ретикулоэндотелиоцитами, представляющими собой важнейшую составную часть (до 85%) системы мононуклеарных фагоцитов. Специфические защитные реакции осуществляются в результате деятельности лимфоцитов лимфатических узлов печени и синтезируемых ими антител. Обезвреживающее действие печени обеспечивает химическое превращение токсических продуктов, как поступающих извне, так и образующихся в ходе межуточного обмена. В результате метаболических превращений в печени (окисление, восстановление, гидролиз, конъюгация с глюкуроновой кислотой или другими соединениями) уменьшается токсичность этих продуктов и (или) повышается их водорастворимость, что делает возможным выделение их из организма.


4.3 Роль печени в обмене веществ


Рассматривая обмен белков, жиров и углеводов мы не раз затрагивали печень. Печень является важнейшим органом, осуществляющим синтез белков. В ней образуется весь альбумин крови, основная масса факторов свертывания, белковые комплексы (гликопротеиды, липопротеиды) и др. В печени происходит и наиболее интенсивный распад белков. Она участвует в обмене аминокислот, синтезе глютамина и креатина; почти исключительно в печени происходит образование мочевины. Существенную роль играет печень в обмене липидов. В основном в ней синтезируются триглицериды, фосфолипиды и желчные кислоты, здесь образуется значительная часть эндогенного холестерина, происходит окисление триглицеридов и образование ацетоновых тел; выделяемая печенью желчь имеет важное значение для расщепления и всасывания жиров в кишечнике. Печень активно участвует в межуточном обмене углеводов: в ней происходит образование сахара, окисление глюкозы, синтез и распад гликогена. Печень является одним из важнейших депо гликогена в организме. Участие печени в пигментном обмене заключается в образовании билирубина, захвате его из крови, конъюгации и экскреции в желчь. Печень участвует в обмене биологически активных веществ - гормонов, биогенных аминов, витаминов. Здесь образуются активные формы некоторых из этих соединений, происходит их депонирование, инактивация. Тесно связан с печени и обмен микроэлементов, т.к. печень синтезирует белки, транспортирующие в крови железо, медь и осуществляет функцию депо для многих из них.

На деятельность печени влияют другие органы нашего тела, а самое главное, она находится под постоянным и неослабным контролем нервной системы. Под микроскопом можно увидеть, что нервные волокна густо оплетают каждую печеночную дольку. Но нервная система оказывает на печень не только прямое влияние. Она координирует работу других органов, воздействующих на печень. Это относится в первую очередь к органам внутренней секреции. Можно считать доказанным, что центральная нервная система регулирует работу печени - непосредственно или через другие системы организма. Она устанавливает интенсивность и направленность процессов обмена веществ печени в соответствии с потребностями организма в данный момент. В свою очередь биохимические процессы в клетках печени вызывают раздражение чувствительных нервных волокон и тем самым влияют на состояние нервной системы.



Белки, жиры и углеводы очень важны нашему организму. Если кратко, белки - основа всех клеточных структур, основной строительный материал, жиры - энергетический и пластический материал, углеводы - источник энергии в организме. Правильное их соотношение и своевременное употребление - это правильное рациональное питание, а это в свою очередь здоровый народ.

Печень же выполняет сложную и многообразную работу, которая очень важна для здорового обмена веществ. Когда пищевые вещества поступают в печень, они преобразуются в новое химическое строение, эти переработанные вещества направляются ко всем органам и тканям, где они превращаются в клетки нашего тела, а часть их откладывается в печени, образуя здесь своеобразное депо. В случае надобности они снова поступают в кровь. Так печень участвует в обмене каждого пищевого вещества, и если ее убрать человек сразу погибнет.


Список литературы:


1.А.А. Маркосян: Физиология;

2.В.М. Покровский: Физиология человека 2003г.

Панов Степан статья: Обмен белков в организме человека 2010г.

Википедия

Л.А. Чистович: Физиология человека 1976г

Н.И. Волков, Биохимия мышечной деятельности 2000. - 504 с.

Ленинджер, А. Основы биохимии / А.Ленинджер. - М.: Мир, 1985.

V. Kumar: Патанатомия заболеваний Роббинса и Котрана 2010 г


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Печень – это орган, работа которого гарантирует человеку долгую и беззаботную жизнь. Этот орган имеет множество жизненно важных функций. Именно о них и пойдет речь в нашей статье.

Функции печени в назывном порядке:

  • экскреторная;
  • эндокринная;
  • защитная;
  • секреторная;
  • детоксикационная функция печени;
  • кроветворная;
  • иммунная;
  • регуляция обмен веществ;
  • выработка желчи;
  • расщепление и всасывание жиров;
  • белковый обмен и множество других.

Теперь разберем их поподробнее.

Регуляция обмена веществ

Печень выполняет ключевую роль в переработке белков и жиров. Она накапливает в себе большое количество питательных веществ, к которым относится гликоген, так необходимый человеку в стрессовом состоянии. Также этот орган запускает важнейшие метаболические процессы в организме.

Защитная функция

Печень – это защита от сильных выбросов гормонов норадреналина и адреналина. В этом органе постоянно происходят сложнейшие химические реакции. Так осуществляется антитоксическая функция печени.
Печень способна усваивать, задерживать и перерабатывать различные химические вещества, которые поступают в нее через другие органы. Кроме всего прочего, она производит некоторые вещества, без которых организм не сможет поддерживать жизнь.
Также защитная функция реализуется в том, что именно печень может обезвреживать ядовитые продукты, которые образуются после расщепления белков. Все азотистые продукты распада превращаются здесь в мочевину и выводятся из организма через мочевой пузырь.
Был проведен эксперимент, касающийся защитной функции печени в организме человека. В кровь человека ввели определенное количество вредоносных микроорганизмов. При этом фиксировалось их количество в различных органах. В мозг поступило всего 0,5%, в легких максимум 10%, а печень сумела задержать почти 80%. Таким образом, именно печень в большей мере защищает нас от различных вредоносных микроорганизмов. Так осуществляется дезинтоксикационная функция.

Экскреторная функция

Эту функцию также называют выделительной. Она отвечает за выведение из организма различных веществ вредоносного и нейтрального характера. Для определения эффективности печени в этом отношении в кровь вводят специальную краску, которая должна выводиться печенью. Через некоторое время уровень содержания этой краски в крови вновь замеряют. Удивительно, но как синтетическая, так и органическая составляющие этой краски выводятся из организма довольно быстро и безболезненно.

Выработка желчи

Желчь – одна из важнейших составляющих переработки пищи. Печень образует желчь безостановочно в течение суток. Если процесс пищеварения приостанавливается –желчь в концентрированной форме накапливается в специальном резервуаре – желчном пузыре. Сама желчь – это продукт, который печень вырабатывает из крови. По факту – это образование из гемоглобина.
Желчь может и навредить человеку. Особенно в ночное время, когда она скапливается в особенно большом количестве в желчном пузыре. В этом случае она не выводится с пищей, так как человек в это время отдыхает. Именно в этом отношении для человека так важен завтрак. Токсичная желчь будет отравлять человека большую часть дня, если он не позавтракает вовремя или, по меньшей мере, не выпьет стакан воды. Лучшее время для завтрака для человека наступает с 5 до 7 часов утра.

Пищеварительная функция

Этой функции следует уделить особенное внимание, так как она считается одной из основных. Пищеварительная функция печени непосредственно связана с желчью, которая и меняет желудочное пищеварение на кишечное.Недостаточная выработка желчи приведет к тому, что организм станет меньше усваивать полезных веществ.

Пищеварительная функция


Кроме этого, печень косвенно принимает участие в сокращении кишечных мышц и в функционировании поджелудочной железы. Следует помнить о том, что печень борется с образованием болезнетворных бактерий в кишечнике и поддерживает нормальный баланс микрофлоры.

Расщепление жиров

Желчь является непосредственным участником всасывания жиров. Только после соединения с желчью жиры в принципе могут быть усвоены организмом. После соединения жиры приобретают способность хорошо растворяться в воде, что и объясняет их всасывание впоследствии.

Регуляция уровня глюкозы

К функциям печени можно отнести также регуляцию обмена микроэлементов: белков, углеводов и жиров. Именно печень регулирует уровень сахара в крови, вырабатывая инсулин. Как уже было сказано – накопление гликогена происходит в печени. При снижении уровня сахара в крови этот элемент сразу же распадается на глюкозу и поступает в кровь, далее происходит усиление желания съесть что-нибудь сладкое, чтобы восстановить запас гликогена.

Белковый обмен

Печень больше других органов имеет свойство накапливать белок (примерно на 20-60% больше). Частично это обусловлено кроветворной функцией. Этот орган вырабатывает все важнейшие составляющие крови, которые участвуют в доставке кислорода, в свертываемости и борьбе с вирусами, бактериями и инородными телами. Поэтому к первым симптомам язвы печени относят плохую свертываемость крови.
Благодаря большому содержанию белка в этом органе, печень различных животных рекомендуют к употреблению.

Синтез витаминов

Печень вырабатывает большое количество витаминов:

Водно-солевой обмен

В печени задерживаются ионы бикарбонатов, хлора, железа, а также ацетон, кетоновые тела и глюкоза.

Как работает печень?

Если смотреть на структуру этого органа под микроскопом, то можно обнаружить, что он устроен по типу пчелиных сот. Каждая микроскопическая деталь печени (клетка) имеет шестиугольную форму, а внутри этого шестиугольника располагается небольшая вена. По краям этот небольшой сегмент окутан крохотными кровеносными сосудами. Все они являются ответвлениями от воротной вены, желчной протоки или от печеночной артерии. Основной функцией этой системы сосудов является доставка кислорода тканям печени. По желчному протоку из печени происходит отток желчи к желчному пузырю.
Контроль функции печени косвенно осуществляется в головном мозге. Воротная вена осуществляет транзит полезных веществ из кишечника к печени. Сначала в кишечнике происходит всасывание и растворение питательных веществ, а потом уже идет их передача к воротной вене. Печеночная вена осуществляет отток крови, обогащенной питательными веществами назад к сердцу. Эта кровеносная система и помогает печени справляться со всеми ее многочисленными функциями.
Все эти процессы очень легко представить на простом примере. Печень – это своеобразный склад, на котором осуществляется хранение и преобразование различных грузов, отправляющихся затем в различные пункты назначения.

Сбор сложных микроэлементов

Печень выступает в роли особой фабрики, на которой производятся сложные белковые, жировые и углеводные микроэлементы. Конечные формы принимают непосредственное участие в обмене веществ. Именно такие микроэлементы обеспечивают транспортировку некоторых гормонов, свертываемость крови и другие функции. Вот лишь некоторые из них.

  1. Альбумин. Это сложный низкомолекулярный белок. Синтез этого микроэлемента происходит только в печени и нигде больше. Это форма белка, которая в основе своей осуществляет перенос некоторых гормонов, питательных веществ и медицинских препаратов в крови.
  2. Фибрин. Белок, который отвечает за свертываемость крови. Также образуется исключительно в печени.
  3. Гликоген. Это дополнительный энергетический ресурс нашего организма, который высвобождается по мере необходимости.

При этом функции транспортировки могут быть осуществлены только своими микроэлементами, выработанными в организме. Искусственные менее эффективны.
Печень – это очень сложный орган и тонко откалиброванный орган. Каждый знает о том, что здоровье организма поддерживается только при помощи работы всех органов без исключения. Так устроена наша физиология. Но какую роль здесь выполняет печень? Этот орган – настоящий снабженец. Именно он заставляет правильно функционировать почти все системы организма. И все вышеперечисленные функции осуществляются крохотными клетками, которые называются – гепациты.


Если основные функции печени насчитывают примерно 10 наименований, то дополнительные – более 20. Какие из них необходимы организму? Абсолютно все! Все это говорит о том, что печень – это один из самых важных органов для человека. По этой причине необходимо беречь этот «передовой барьер» вашего организма от вредного воздействия алкоголя, тяжелой пищи и других факторов. Помните, что своевременная нормализация функции печени убережет ваш организм от большого количества болезней. Уделите внимание своей печени и почувствуете небывалую легкость и комфорт.

Кто сказал, что вылечить тяжелые заболевания печени невозможно?

  • Много способов перепробовано, но ничего не помогает...
  • И сейчас Вы готовы воспользоваться любой возможностью, которая подарит Вам долгожданное хорошее самочувствие!

Эффективное средство для лечения печени существует. Перейдите по ссылке и узнайте что рекомендуют врачи!

Биологическая химия Лелевич Владимир Валерьянович

Роль печени в углеводном обмене

Основная роль печени в углеводном обмене заключается в поддержании нормального содержания глюкозы в крови – т. е. в регуляции нормогликемии.

Это достигается за счет нескольких механизмов.

1. Наличие в печени фермента глюкокиназы. Глюкокиназа, подобно гексокиназе, фосфорилирует глюкозу до глюкозо-6-фосфата. Следует отметить, что глюкокиназа в отличие от гексокиназы, содержится, только в печени и?-клетках островков Лангерганса. Активность глюкокиназы в печени в 10 раз превышает активность гексокиназы. Кроме того, глюкокиназа в противоположность гексокиназе имеет более высокое значение Кm для глюкозы (т. е. меньшее сродство к глюкозе).

После приема пищи содержание глюкозы в воротной вене резко возрастает и достигает 10 ммоль/л и более. Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и увеличивает поглощение глюкозы печенью. Благодаря синхронной работе гексокиназы и глюкокиназы печень быстро и эффективно фосфорилирует глюкозу до глюкозо-6-фосфата, обеспечивая нормогликемию в системе общего кровотока. Далее глюкозо-6-фосфат может метаболизироваться по нескольким направлениям (рис. 28.1).

2. Синтез и распад гликогена. Гликоген печени выполняет роль депо глюкозы в организме. После приема пищи избыток углеводов откладывается в печени в виде гликогена, уровень которого составляет примерно 6 % от массы печени (100–150 г). В промежутках между приемами пищи, а также в период «ночного голодания» пополнения пула глюкозы в крови за счет всасывания из кишечника не происходит. В этих условиях активируется распад гликогена до глюкозы, что поддерживает уровень гликемии. Запасы гликогена истощаются к концу 1-х суток голодания.

3. В печени активно протекает глюконеогенез – синтез глюкозы из неуглеводных предшественников (лактат, пируват, глицерол, гликогенные аминокислоты). Благодаря глюконеогенезу в организме взрослого человека образуется примерно 70 г глюкозы в сутки. Активность глюконеогенеза резко возрастает при голодании на 2-е сутки, когда запасы гликогена в печени исчерпаны.

Благодаря глюконеогенезу печень участвует в цикле Кори – процессе превращения молочной кислоты, образующейся в мышцах, в глюкозу.

4. В печени осуществляется превращение фруктозы и галактозы в глюкозу.

5. В печени происходит синтез глюкуроновой кислоты.

Рис. 28.1. Участие глюкозо-6-фосфата в метаболизме углеводов

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Болезни печени, выявленные при общем и наружном осмотре (сопровождаемые появлением желтухи) Симптом иктерус (желтуха) является характерным для таких заболеваний как вирусный гепатит, пироплазмоз, бабезиоз, описторхоз, меторхоз, рассмотренные выше отравление

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

Болезни печени Исследование печени. Роль печени в животном организме велика и разнообразна. Она связана со всеми видами обмена. В печени образуется из приносимых кровью моносахаридов гликоген, который расходуется в виде глюкозы по мере надобности; печень участвует в

Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

Нарушения функции печени Все животные с нарушением функции печени должны, безусловно, находиться под постоянным наблюдением ветеринара несмотря на то, что традиционная медицина в общем немногое может предложить для лечения этой патологии. Я бы порекомендовал лечить их

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Из книги Проблемы лечебного голодания. Клинико-экспериментальные исследования [все четыре части!] автора Анохин Петр Кузьмич

Из книги Разведение рыбы, раков и домашней водоплавающей птицы автора Задорожная Людмила Александровна

Роль гормонов Копулятивное поведение тесно связано с эндокринной функцией. Человек принципиально отличается от животного тем, что у него оно не запускается гуморальными факторами, как у животных. Поведение спаривания у человека не запускается гуморальными факторами,

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Роль тестостерона Одним из распространенных заблуждений является предоставление прямой зависимости копулятивного поведения от продукции андрогенов в организме мужчины. На самом же деле они оказывают на его способность к совокуплению следующее влияние: 1)

Из книги автора

Изменение активности некоторых Ферментов крови и печени крыс при экспериментальном голодании А. А. ПОКРОВСКИЙ, Г. К. ПЯТНИЦКАЯ (Москва) Проблема влияния голодания на разные показатели обменных процессов в организме животных и человека продолжает привлекать внимание

Из книги автора

Влияние голодания на активность ферментов пентозофосфатного пути в печени и мозге крыс Ю. Л. ЗАХАРЬИН (Москва) В последние годы в клинике часто применяется с лечебными целями, в частности, для лечения психических заболеваний, полное голодание. Не вызывает сомнения, что

Из книги автора

Из книги автора

Из книги автора

Глава 28. Биохимия печени Печень занимает центральное место в обмене веществ и выполняет многообразные функции:1. Гомеостатическая - регулирует содержание в крови веществ, поступающих в организм с пищей, что обеспечивает постоянство внутренней среды организма.2.

Из книги автора

Роль печени в липидном обмене Печень участвует во всех этапах липидного обмена, начиная с переваривания липидов и заканчивая специфическими метаболическими превращениями отдельных липидных фракций:1. синтез желчных кислот и образование желчи;2. ?-окисление жирных

Из книги автора

Роль печени в обмене аминокислот и белков Печень играет центральную роль в обмене белков и других азотсодержащих соединений. Она выполняет следующие функции:1. синтез специфических белков плазмы: - в печени синтезируется: 100 % альбуминов, 75 – 90 % ?-глобулинов, 50 %

Из книги автора

Обезвреживающая функция печени Печень является главным органом, где про обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей

  • 1. Понятие о возбудимых тканях. Основные свойства возбудимых тканей. Раздражители. Классификация раздражителей.
  • 2. Особенности почечного кровотока. Нефрон: строение, функции, характеристика процессов мочеобразования и мочевыведения. Первичная и вторичная моча. Состав мочи.
  • 1. Современные представления о строении и функции клеточных мембран. Понятие о мембранном потенциале клетки. Основные положения мембранной теории возникновения мембранного потенциала. Потенциал покоя.
  • 2. Внутриплевральное давление, его значение. Эластичность легочной ткани. Факторы, определяющие эластическую тягу легких. Пневмоторакс.
  • 3. Задача. Одинаковы ли условия возникновения "теплового удара" и теплового обморока у людей?
  • 1. Характеристика изменений мембранного потенциала клетки в процессе возбуждения и торможения. Потенциал действия, его параметры и значение.
  • 2. Автоматия сердечной мышцы: понятие, современные представления о причинах, особенности. Степень автоматии различных отделов сердца. Опыт Станниуса.
  • 3. Задача. Определите, какое дыхание более эффективно:
  • 1. Общая характеристика нервных клеток: классификация, строение, функции
  • 2. Транспорт кислорода кровью. Зависимость связывания кислорода кровью от его парциального давления, напряжения углекислого газа, pH и температура крови. Эффект Бора.
  • 3. Задача. Объясните, почему охлаждение в воде 20° больше, чем при неподвижном воздухе той же температуры?
  • 1. Строение и типы нервных волокон и нервов. Основные свойства нервных волокон и нервов. Механизмы распространения возбуждения по нервным волокнам.
  • 2. Типы кровеносных сосудов. Механизмы движения крови по сосудам. Особенности движения крови по венам. Основные гемодинамические показатели движения крови по сосудам.
  • 3. Задача. Перед едой большого количества мяса один испытуемый выпил стакан воды, второй – стакан сливок, третий – стакан бульона. Как это повлияет на переваривание мяса?
  • 1. Понятие о синапсе. Строение и типы синапсов. Механизмы синаптической передачи возбуждения и торможения. Медиаторы. Рецепторы. Основные свойства синапсов. Понятие об эфаптической передаче.
  • 2. Характеристика обмена углеводов в организме.
  • 3. Задача. Если бы клеточная мембрана была абсолютно непроницаема для ионов, как бы изменилась величина потенциала покоя?
  • 1. Общие закономерности адаптации человека. Эволюция и формы адаптации. Адаптогенные факторы.
  • 2. Транспорт углекислого газа кровью
  • 2. Характеристика обмена жиров в организме.
  • 3. Задача. При обработке нерва тетродотоксином пп увеличивается, а пд не возникает. В чем причина этих различий?
  • 1. Понятие о нервном центре. Основные свойства нервных центров. Компенсация функций и пластичность нервных процессов.
  • 2. Пищеварение: понятие, физиологические основы голода и насыщения. Пищевой центр. Основные теории, объясняющие состояние голода и насыщения.
  • 1. Характеристика основных принципов координации в деятельности цнс.
  • 2. Проводимость сердечной мышцы: понятие, механизм, особенности.
  • 3. Задача. У человека установлена задержка оттока желчи из желчного пузыря. Влияет ли это на переваривание жиров?
  • 1. Функциональная организация спинного мозга. Роль спинальных центров в регуляции движений и вегетативных функций.
  • 2. Теплопродукция и теплоотдача: механизмы и факторы их определяющие. Компенсаторные изменения теплопродукции и теплоотдачи.
  • 1. Характеристика функций продолговатого, среднего, промежуточного мозга, мозжечка, их роль в моторных и вегетативных реакциях организма.
  • 2. Нейрогуморальные механизмы регуляции постоянства температуры тела
  • 1. Кора больших полушарий головного мозга как высший отдел цнс, ее значение, организация. Локализация функций в коре больших полушарий. Динамический стереотип нервной деятельности.
  • 2. Основные функции желудочно-кишечного тракта. Основные принципы регуляции процессов пищеварения. Основные эффекты нервных и гуморальных воздействий на органы пищеварения по и.П.Павлову.
  • 3. Задача. При анализе экг обследуемого было сделано заключение о нарушении процессов восстановления в миокарде желудочков. На основании каких изменений на экг было сделано такое заключение?
  • 1. Функциональная организация и функции вегетативной нервной системы (внс). Понятие о симпатическом и парасимпатическом отделах внс. Их особенности, отличия, влияние на деятельность органов.
  • 2. Понятие о железах внутренней секреции. Гормоны: понятие, общие свойства, классификация по химической структуре.
  • 3. Задача. Ребенок, который учится играть на пианино, первое время играет не только руками, но и "помогает" себе головой, ногами и даже языком. Каков механизм этого явления?
  • 1. Характеристика зрительной сенсорной системы.
  • 2. Характеристика обмена белков в организме.
  • 3. Задача. Яд, содержащийся в некоторых видах грибов, резко укорачивает абсолютно рефлекторный период сердца. Может ли отравление этими грибами привести к смерти. Почему?
  • 1. Характеристика двигательной сенсорной системы.
  • 3. Задача. Если Вы находитесь:
  • 1. Понятие о слуховой, болевой, висцеральной, тактильной, обонятельной и вкусовой сенсорных системах.
  • 2. Половые гормоны, функции в организме.
  • 1. Понятие о безусловных рефлексах, их классификация по различным показателям. Примеры простых и сложных рефлексов. Инстинкты.
  • 2. Основные этапы пищеварения в желудочно-кишечном тракте. Классификация пищеварения в зависимости от ферментов его осуществляющих; классификация в зависимости от локализации процесса.
  • 3. Задача. Под влиянием лекарственных веществ увеличилась проницаемость мембраны для ионов натрия. Как изменится мембранный потенциал и почему?
  • 1. Виды и характеристика торможения условных рефлексов.
  • 2. Основные функции печени. Пищеварительная функция печени. Роль желчи в процессе пищеварения. Желчеобразование и желчевыделение.
  • 1. Основные закономерности управления движениями. Участие различных сенсорных систем в управлении движениями. Двигательный навык: физиологическая основа, условия и фазы его образования.
  • 2. Понятие и характеристика полостного и пристеночного пищеварения. Механизмы всасывания.
  • 3. Задачи. Объясните, почему при кровопотере происходит уменьшение образования мочи?
  • 1. Типы высшей нервной деятельности и их характеристики.
  • 3. Задача. При подготовке кошки к участию в выставке некоторые хозяева содержат ее на холоде и при этом кормят жирной пищей. Зачем это делают?
  • 2. Характеристика нервной, рефлекторной и гуморальной регуляции сердечной деятельности.
  • 3. Задача. Какой тип рецепторов должно блокировать лекарственное вещество, чтобы моделировать перерезку:
  • 1. Электрическая активность сердца. Физиологические основы электрокардиографии. Электрокардиограмма. Анализ электрокардиограммы.
  • 2. Нервная и гуморальная регуляция деятельности почек.
  • 1. Основные свойства скелетной мышцы. Одиночное сокращение. Суммация сокращений и тетанус. Понятие об оптимуме и пессимуме. Парабиоз и его фазы.
  • 2. Функции гипофиза. Гормоны передней и задней доли гипофиза, их эффекты.
  • 2. Выделительные процессы: значение, органы выделения. Основные функции почек.
  • 3. Задача. Под влиянием химического фактора в мембране клетки увеличилось количество калиевых каналов, которые могут активироваться при возбуждении. Как это скажется на потенциале действия и почему?
  • 1. Понятие об утомлении. Физиологические проявления и фазы развития утомления. Основные физиологические и биохимические изменения в организме при утомлении. Понятие об "активном" отдыхе.
  • 2. Понятие о гомойотермных и пойкилотермных организмах. Значение и механизмы поддержания постоянства температуры тела. Понятие о температурном ядре и оболочке тела.
  • 1. Сравнительная характеристика особенностей гладкой, сердечной и скелетной мышц. Механизм мышечного сокращения.
  • 1. Понятие "система крови". Основные функции и состав крови. Физико - химические свойства крови. Буферные системы крови. Плазма крови и ее состав. Регуляция кроветворения.
  • 2. Значение щитовидной железы, ее гормоны. Гипер- и гипофункция. Паращитовидная железа, ее роль.
  • 3. Задача. Какой механизм доминирует как поставщик энергии:
  • 1. Эритроциты: строение, состав, функции, методы определения. Гемоглобин: структура, функции, методы определения.
  • 2. Нервная и гуморальная регуляция дыхания. Понятие о дыхательном центре. Автоматия дыхательного центра. Рефлекторные влияния от механорецепторов легких, их значение.
  • 3. Задача. Объясните, почему возбуждение м-холинорецепторов сердца приводит к угнетению деятельности этого органа, а возбуждение тех же рецепторов в гладкой мускулатуре сопровождается ее спазмом?
  • 1. Лейкоциты: типы, строение, функции, методика определения, подсчет. Лейкоцитарная формула.
  • 3. Задача. Каков будет результат трех исследований соотношения мышечных волокон I и II типа в 4-хглавой мышце бедра, у подростка, обследование которого проводилось в 10, 13 и 16 лет?
  • 1. Учение о группах крови. Группы крови и резус - фактор, методика их определения. Переливание крови.
  • 2. Основные этапы обмена веществ в организме. Регуляция обмена веществ. Роль печени в обмене белков, жиров, углеводов.
  • 3. Задача. Во время кровопускания наблюдается падение ад, которое затем восстанавливается до исходной величины. Каков механизм?
  • 1. Свертывание крови: механизм, значение процесса. Противосвертывающая система, фибринолиз.
  • 2. Сердце: строение, фазы сердечного цикла. Основные показатели деятельности сердца.
  • 1. Возбудимость сердечной мышцы: понятие, механизмы. Изменения возбудимости в разные периоды сердечного цикла. Экстрасистола.
  • Превращения энергетических веществ в организме с момента их поступления в клетку характеризуют второй этап - этап межуточного обмена. В ходе межуточного обмена из большей части продуктов первого этапа обмена образуются ацетил коэнзим-А, α-кетоглутарат и щавелевоуксусная кислота. Эти вещества подвергаются окислению в цикле лимонной кислоты. В результате окислительных процессов освобождается энергия, запасаемая в макроэргических связях аденозинтрифосфорной кислоты.

    Конечный этап обмена веществ - выделение продуктов неполного распада с мочой, потом, экскретами сальных желез. В процессе обмена веществ происходит образование клеточных структур и освобождение энергии. Эти две стороны обмена выступают в единстве. Однако роль различных пищевых веществ в пластической и энергетической сторонах обмена неодинакова.

    Роль центра в регуляции обмена веществ и энергии играют ядра гипоталамуса. Они имеют непосредственное отношение к генерации чувства голода и насыщения, теплообмену, осморегуляции. В гипоталамусе имеются полисенсорные нейроны, реагирующие на изменения концентрации глюкозы, водородных ионов, температуры тела, осмотического давления, т. е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды и формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболизма к потребностям организма.

    В качестве звеньев эфферентной системы регуляции обмена используются симпатический и парасимпатический отделы вегетативной нервной системы. Вьщеляющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными посредниками влияние на функцию и метаболизм тканей. Под управляющим влиянием гипоталамуса находится и используется в качестве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размножение, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жирные кислоты, минеральные вещества.

    Химическая энергия питательных веществ используется для ресинтеза АТФ, выполнения всех видов работы и процессы, протекающие внутри клетки. Поэтому важнейшим эффектором, через который оказывается регулирующее воздействие на обмен веществ и энергии, являются клетки органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

    Интеграция обмена белков, жиров и углеводов клетки осуществляется посредством общих для них источников энергии. При биосинтезе любых простых и сложных органических соединений, макромолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД Н, НАДФ Н, поставляющих энергию для восстановления окисленных соединений других веществ.

    Углеводный обмен

    В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз, в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина.

    Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.

    Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

    Липидный обмен

    Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы. Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП). Холестерол используется, в первую очередь, для синтеза желчных кислот, также он включается в состав липопротеинов низкой плотности (ЛПНП) и ЛПОНП.

    При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел, используемых большинством тканей как альтернативный источник энергии.

    Белковый обмен

    Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на "экспорт" – альбумины, многие глобулины, ферменты крови, а также фибриноген и факторы свертывания крови.

    Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в состав мочевины.

    Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.

    "

Введение

Основные функции печени

Участие печени в белковом обмене

Роль печени в углеводном обмене

Роль печени в липидном обмене

Печень в водно-солевом обмене

Роль печени в обмене веществ у птиц

Список использованной литературы

Введение.

Печень играет огромную роль в пищеварении и обмене веществ. Все вещества, всасывающиеся в кровь, обязательно поступают в печень и подвергаются метаболическим превращениям. В печени синтезируется различные органические вещества: белки, гликоген, жиры, фосфатиды и другие соединения. Кровь поступает в нее по печеночной артерии и воротной вене. Причем 80 % крови, идущей от органов брюшной полости, поступает по воротной вене и только 20 % - по печеночной артерии. Кровь оттекает от печени по печеночной вене.

Для изучения функций печени применяют ангиостамический метод, фистулу Экка–Павлова, при помощи которых исследуют биохимический состав притекающей и оттекающей, применяют метод катетеризации сосудов воротной системы, разработанный А. А. Алиевым.

Печени принадлежит существенная роль в обмене белков. Из аминокислот, поступающих с кровью, в печени образуется белок. В ней формируются фибриноген, протромбин, выполняющие важные функции в свертывании крови. Здесь же происходят процессы перестройки аминокислот: дезаминирование, трансаминирование, декарбоксилирование.

Печень - центральное место обезвреживания ядовитых продуктов азотистого обмена, в первую очереди аммиака, который превращается в мочевину или идет на образование амидов кислот, в печени происходит распад нуклеиновых кислот, окисление пуриновых оснований и образование конечного продукта их обмена - мочевой кислоты. Вещества (индол, скатол, крезол, фенол), поступающие из толстого отдела кишечника, соединяясь с серной и глюкуроновой кислотами, превращаются в эфирно-серные кислоты. Удаление печени из организма животных приводит к их гибели. Она наступает, по-видимому, из-за накопления в крови аммиака и других ядовитых промежуточных продуктов азотистого обмена.

Большую роль печень играет в обмене углеводов. Глюкоза, приносимая из кишечника по воротной вене, в печени превращается в гликоген. Благодаря высоким запасам гликогена печень служит основным углеводным депо организма. Гликогенная функция печени обеспечивается действием ряда ферментов и регулируется центральной нервной системой и 1 гормонами - адреналином, инсулином, глюкагоном. В случае повышенной потребности организма в сахаре, например, во время усиленной мышечной работы или при голодании гликоген под действием фермента фосфорилазы превращается в глюкозу и поступает в кровь. Таким образом, печень регулирует постоянство глюкозы в крови и нормальное обеспечение ею органов и тканей.

В печени происходит важнейшее превращение жирных кислот, из которых синтезируются жиры, свойственные для данного вида животного. Под действием фермента липазы жиры расщепляются на жирные кислоты и глицерин. Дальнейшая судьба глицерина похожа на судьбу глюкозы. Его превращение начинается с участием АТФ и заканчивается распадом до молочной кислоты с последующим окислением до углекислого газа и воды. Иногда при необходимости печень может синтезировать гликоген из молочной кислоты.

В печени также осуществляется синтез жиров и фосфатидов, которые поступают в кровь, транспортируются по всему организму. Значительную роль она играет в синтезе холестерина и его эфиров. При окислении холестерина в печени образуются желчные кислоты, которые выделяются с желчью и участвуют в процессах пищеварения.

Печень принимает участие в обмене жирорастворимых витаминов, является главным депо ретинола и его провитамина - каротина. Она способна синтезировать цианокобаламин.

Печень может задерживать в себе излишнюю воду и тем самым не допускать разжижения крови: она содержит запас минеральных солей и витаминов, участвует в пигментном обмене.

Печень выполняет барьерную функцию. Если в нее с кровью заносятся какие-либо болезнетворные микробы, то они подвергаются обеззараживанию ею. Эту функцию выполняют звездчатые клетки, расположенные в стенках кровеносных капилляров, принизывающих печеночные дольки. Захватывая ядовитые соединения, звездчатые клетки в союзе с печеночными клетками обеззараживают их. По мере необходимости звездчатые клетки выходят из стенок капилляров и, свободно передвигаясь, выполняют свою функцию.

Кроме того, печень способна переводить свинец, ртуть, мышьяк и другие ядовитые вещества - в неядовитые.

Печень является основным углеводным депо организма и регулирует постоянство глюкозы в крови. Она содержит запасы минеральных веществ и витаминов. Является депо крови, в ней образуется желчь, необходимая для пищеварения.

Просмотров